1

In quantum computing, a qubit or quantum bit (sometimes qbit) is the basic unit of quantum information: 1

1 (one, also called unit, and unity) is a number and a numerical digit used to represent that number in numerals. It represents a single entity, the unit of counting or measurement. For example, a line segment of unit length is a line segment of length 1. In conventions of sign where zero is considered neither positive nor negative, 1 is the first and smallest positive integer. It is also sometimes considered the first of the infinite sequence of natural numbers, followed by 2, although by other definitions 1 is the second natural number, following 0.

The fundamental mathematical property of 1 is to be a multiplicative identity, meaning that any number multiplied by 1 returns that number. Most if not all properties of 1 can be deduced from this. In advanced mathematics, a multiplicative identity is often denoted 1, even if it is not a number. 1 is by convention not considered a prime number; although universal today, this was a matter of some controversy until the mid-20th century.

Mathematically, 1 is:

  • in arithmetic (algebra) and calculus, the natural number that follows 0 and the multiplicative identity element of the integers, real numbers and complex numbers;
  • more generally, in algebra, the multiplicative identity (also called unity), usually of a group or a ring.


Formalizations of the natural numbers have their own representations of 1. In the Peano axioms, 1 is the successor of 0. In Principia Mathematica, it is defined as the set of all singletons (sets with one element), and in the Von Neumann cardinal assignment of natural numbers, it is defined as the set {0}.

In a multiplicative group or monoid, the identity element is sometimes denoted 1, but e (from the German Einheit, “unity”) is also traditional. However, 1 is especially common for the multiplicative identity of a ring, i.e., when an addition and 0 are also present. When such a ring has characteristic n not equal to 0, the element called 1 has the property that n1 = 1n = 0 (where this 0 is the additive identity of the ring). Important examples are finite fields.

By definition, 1 is the magnitude, absolute value, or norm of a unit complex number, unit vector, and a unit matrix (more usually called an identity matrix). Note that the term unit matrix is sometimes used to mean something quite different.

By definition, 1 is the probability of an event that is absolutely or almost certain to occur.

View more:

https://en.m.wikipedia.org/wiki/1