M

In quantum computing, a qubit or quantum bit (sometimes qbit) is the basic unit of quantum information: M

Magnetism

Magnetism is a class of physical phenomena that are mediated by magnetic fields. Electric currents and the magnetic moments of elementary particles give rise to a magnetic field, which acts on other currents and magnetic moments. Magnetism is one aspect of the combined phenomenon of electromagnetism. The most familiar effects occur in ferromagnetic materials, which are strongly attracted by magnetic fields and can be magnetized to become permanent magnets, producing magnetic fields themselves. Demagnetizing a magnet is also possible. Only a few substances are ferromagnetic; the most common ones are iron, cobalt and nickel and their alloys. The prefix ferro- refers to iron, because permanent magnetism was first observed in lodestone, a form of natural iron ore called magnetite, Fe3O4.

All substances exhibit some type of magnetism. Magnetic materials are classified according to their bulk susceptibility. Ferromagnetism is responsible for most of the effects of magnetism encountered in everyday life, but there are actually several types of magnetism. Paramagnetic substances, such as aluminum and oxygen, are weakly attracted to an applied magnetic field; diamagnetic substances, such as copper and carbon, are weakly repelled; while antiferromagnetic materials, such as chromium and spin glasses, have a more complex relationship with a magnetic field. The force of a magnet on paramagnetic, diamagnetic, and antiferromagnetic materials is usually too weak to be felt and can be detected only by laboratory instruments, so in everyday life, these substances are often described as non-magnetic.

The magnetic state (or magnetic phase) of a material depends on temperature, pressure, and the applied magnetic field. A material may exhibit more than one form of magnetism as these variables change.

The strength of a magnetic field almost always decreases with distance, though the exact mathematical relationship between strength and distance varies. Different configurations of magnetic moments and electric currents can result in complicated magnetic fields.

Only magnetic dipoles have been observed, although some theories predict the existence of magnetic monopoles.

View more:

https://en.m.wikipedia.org/wiki/Magnetism

Materials science

The interdisciplinary field of materials science, also commonly termed materials science and engineering, is the design and discovery of new materials, particularly solids. The intellectual origins of materials science stem from the Enlightenment, when researchers began to use analytical thinking from chemistry, physics, and engineering to understand ancient, phenomenological observations in metallurgy and mineralogy. Materials science still incorporates elements of physics, chemistry, and engineering. As such, the field was long considered by academic institutions as a sub-field of these related fields. Beginning in the 1940s, materials science began to be more widely recognized as a specific and distinct field of science and engineering, and major technical universities around the world created dedicated schools for its study.

Many of the most pressing scientific problems humans currently face are due to the limits of available materials and how they are used. Thus, breakthroughs in materials science are likely to affect the future of technology significantly.

Materials scientists emphasize understanding, how the history of a material (processing) influences its structure, and thus the material’s properties and performance. The understanding of processing-structure-properties relationships is called the materials paradigm. This paradigm is used to advance understanding in a variety of research areas, including nanotechnology, biomaterials, and metallurgy. Materials science is also an important part of forensic engineering and failure analysis – investigating materials, products, structures or components, which fail or do not function as intended, causing personal injury or damage to property. Such investigations are key to understanding, for example, the causes of various aviation accidents and incidents.

View more:

https://en.m.wikipedia.org/wiki/Materials_science

Mathematics

Mathematics (from Greek: μάθημα, máthēma, ‘knowledge, study, learning’) includes the study of such topics as quantity (number theory), structure (algebra), space (geometry), and change (mathematical analysis). It has no generally accepted definition.

Mathematicians seek and use patterns to formulate new conjectures; they resolve the truth or falsity of such by mathematical proof. When mathematical structures are good models of real phenomena, mathematical reasoning can be used to provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, and the systematic study of the shapes and motions of physical objects. Practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry.

Rigorous arguments first appeared in Greek mathematics, most notably in Euclid’s Elements. Since the pioneering work of Giuseppe Peano (1858–1932), David Hilbert (1862–1943), and others on axiomatic systems in the late 19th century, it has become customary to view mathematical research as establishing truth by rigorous deduction from appropriately chosen axioms and definitions. Mathematics developed at a relatively slow pace until the Renaissance, when mathematical innovations interacting with new scientific discoveries led to a rapid increase in the rate of mathematical discovery that has continued to the present day.

Mathematics is essential in many fields, including natural science, engineering, medicine, finance, and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics and game theory. Mathematicians engage in pure mathematics (mathematics for its own sake) without having any application in mind, but practical applications for what began as pure mathematics are often discovered later.

View more:

https://en.m.wikipedia.org/wiki/Mathematics

Medicine

Medicine is the science and practice of establishing the diagnosis, prognosis, treatment, and prevention of disease. Medicine encompasses a variety of health care practices evolved to maintain and restore health by the prevention and treatment of illness. Contemporary medicine applies biomedical sciences, biomedical research, genetics, and medical technology to diagnose, treat, and prevent injury and disease, typically through pharmaceuticals or surgery, but also through therapies as diverse as psychotherapy, external splints and traction, medical devices, biologics, and ionizing radiation, amongst others.

Medicine has been practiced since prehistoric times, during most of which it was an art (an area of skill and knowledge) frequently having connections to the religious and philosophical beliefs of local culture. For example, a medicine man would apply herbs and say prayers for healing, or an ancient philosopher and physician would apply bloodletting according to the theories of humorism. In recent centuries, since the advent of modern science, most medicine has become a combination of art and science (both basic and applied, under the umbrella of medical science). While stitching technique for sutures is an art learned through practice, the knowledge of what happens at the cellular and molecular level in the tissues being stitched arises through science.

Prescientific forms of medicine are now known as traditional medicine and folk medicine. They remain commonly used with, or instead of, scientific medicine and are thus called alternative medicine. As an example, evidence on the effectiveness of acupuncture is “variable and inconsistent” for any condition, but is generally safe when done by an appropriately trained practitioner. In contrast, alternative treatments outside the bounds not just of scientific medicine, but also outside the bounds of safety and efficacy are termed quackery. This can encompass an array of practices and practitioners, irrespective of whether they are prescientific (traditional medicine and folk medicine) or modern pseudo-scientific, including chiropractic which rejects modern scientific germ theory of disease (instead believing without evidence that human diseases are caused by invisible subluxation of the bones, predominantly of the spine and less so of other bones), with just over half of chiropractors also rejecting the science of immunization.

View more:

https://en.m.wikipedia.org/wiki/Medicine

Meson

In particle physics, mesons (/ˈmiːzɒnz/ or /ˈmɛzɒnz/) are hadronic subatomic particles composed of one quark and one antiquark, bound together by strong interactions. Because mesons are composed of quark subparticles, they have a meaningful physical size, a diameter of roughly one femtometer (1×10−15 m), which is about 1.2 times the size of a proton or neutron. All mesons are unstable, with the longest-lived lasting for only a few hundredths of a microsecond. Charged mesons decay (sometimes through mediating particles) to form electrons and neutrinos. Uncharged mesons may decay to photons. Both of these decays imply that color is no longer a property of the byproducts.

Outside the nucleus, mesons appear in nature only as short-lived products of very high-energy collisions between particles made of quarks, such as cosmic rays (high-energy protons and neutrons) and baryonic matter. Mesons are often produced artificially in a cyclotron in the collisions of protons, antiprotons, or other particles.

Higher-energy (more massive) mesons were created momentarily in the Big Bang, but are not thought to play a role in nature today. However, such heavy mesons are regularly created in particle accelerator experiments, in order to understand the nature of the heavier types of quark that compose the heavier mesons.

View more:

https://en.m.wikipedia.org/wiki/Meson

Microscope

A microscope (from the Ancient Greek: μικρός, mikrós, “small” and σκοπεῖν, skopeîn, “to look” or “see”) is an instrument used to see objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using such an instrument. Microscopic means invisible to the eye unless aided by a microscope.

There are many types of microscopes, and they may be grouped in different ways. One way is to describe the way the instruments interact with a sample to create images, either by sending a beam of light or electrons to a sample in its optical path, or by scanning across, and a short distance from the surface of a sample using a probe. The most common microscope (and the first to be invented) is the optical microscope, which uses light to pass through a sample to produce an image. Other major types of microscopes are the fluorescence microscope, the electron microscope (both the transmission electron microscope and the scanning electron microscope) and the various types of scanning probe microscopes.

View more:

https://en.m.wikipedia.org/wiki/Microscope

Microscopic scale

The microscopic scale (from Greek: μικρός, mikrós, “small” and σκοπέω, skopéō “look”) is the scale of objects and events smaller than those that can easily be seen by the naked eye, requiring a lens or microscope to see them clearly. In physics, the microscopic scale is sometimes regarded as the scale between the macroscopic scale and the quantum scale. Microscopic units and measurements are used to classify and describe very small objects. One common microscopic length scale unit is the micrometre (also called a micron) (symbol: μm), which is one millionth of a metre.

View more:

https://en.m.wikipedia.org/wiki/Microscopic_scale

Modern physics

Modern physics is an effort to understand the underlying processes of the interactions with matter, utilizing the tools of science and engineering. In general, the term is used to refer to any branch of physics either developed in the early 20th century and onward, or branches greatly influenced by early 20th century physics. Notable branches of modern physics include quantum physics, special relativity, and general relativity.

Classical physics is typically concerned with everyday conditions: speeds are much lower than the speed of light, sizes are much greater than that of atoms, and energies are relatively small. Modern physics, however, is concerned with more extreme conditions, such as high velocities that are comparable to the speed of light (special relativity), small distances comparable to the atomic radius (quantum mechanics), and very high energies (relativity). In general, quantum and relativistic effects are believed to exist across all scales, although these effects may be very small in everyday life. While quantum mechanics is compatible with special relativity (see relativistic quantum mechanics), one of the unsolved problems in physics is the unification of quantum mechanics and general relativity, which the Standard model (of particle physics) currently cannot account for.

View more:

https://en.m.wikipedia.org/wiki/Modern_physics

Microorganism

A microorganism, or microbe, is a microscopic organism, which may exist in its single-celled form or a colony of cells.

The possible existence of unseen microbial life was suspected from ancient times, such as in Jain scriptures from 6th century BC India. The scientific study of microorganisms began with their observation under the microscope in the 1670s by Antonie van Leeuwenhoek. In the 1850s, Louis Pasteur found that microorganisms caused food spoilage, debunking the theory of spontaneous generation. In the 1880s, Robert Koch discovered that microorganisms caused the diseases tuberculosis, cholera, diphtheria and anthrax.

Microorganisms include all unicellular organisms and so are extremely diverse. Of the three domains of life identified by Carl Woese, all of the Archaea and Bacteria are microorganisms. These were previously grouped in the two domain system as Prokaryotes, the other being the eukaryotes. The third domain Eukaryota includes all multicellular organisms and many unicellular protists and protozoans. Some protists are related to animals and some to green plants. Many of the multicellular organisms are microscopic, namely micro-animals, some fungi, and some algae, but these are not discussed here.

They live in almost every habitat from the poles to the equator, deserts, geysers, rocks, and the deep sea. Some are adapted to extremes such as very hot or very cold conditions, others to high pressure, and a few, such as Deinococcus radiodurans, to high radiation environments. Microorganisms also make up the microbiota found in and on all multicellular organisms. There is evidence that 3.45-billion-year-old Australian rocks once contained microorganisms, the earliest direct evidence of life on Earth.

Microbes are important in human culture and health in many ways, serving to ferment foods and treat sewage, and to produce fuel, enzymes, and other bioactive compounds. Microbes are essential tools in biology as model organisms and have been put to use in biological warfare and bioterrorism. Microbes are a vital component of fertile soil. In the human body, microorganisms make up the human microbiota, including the essential gut flora. The pathogens responsible for many infectious diseases are microbes and as such are the target of hygiene measures.

View more:

https://en.m.wikipedia.org/wiki/Microorganism

Molecule

A molecule is an electrically neutral group of two or more atoms held together by chemical bonds. Molecules are distinguished from ions by their lack of electrical charge.

In quantum physics, organic chemistry, and biochemistry, the distinction from ions is dropped and molecule is often used when referring to polyatomic ions.

In the kinetic theory of gases, the term molecule is often used for any gaseous particle regardless of its composition. This violates the definition that a molecule contain two or more atoms, since the noble gases are individual atoms.

A molecule may be homonuclear, that is, it consists of atoms of one chemical element, as with two atoms in the oxygen molecule (O2); or it may be heteronuclear, a chemical compound composed of more than one element, as with water (two hydrogen atoms and one oxygen atom; H2O).

Atoms and complexes connected by non-covalent interactions, such as hydrogen bonds or ionic bonds, are typically not considered single molecules.

Molecules as components of matter are common. They also make up most of the oceans and atmosphere. Most organic substances are molecules. The substances of life are molecules, e.g. proteins, the amino acids they are made of, the nucleic acids (DNA & RNA), sugars, carbohydrates, fats, and vitamins. The nutrient minerals ordinarily are not molecules, e.g. iron sulfate.

However, the majority of familiar solid substances on Earth are not made of molecules. These include all of the minerals that make up the substance of the Earth, soil, dirt, sand, clay, pebbles, rocks, boulders, bedrock, the molten interior, and the core of the Earth. All of these contain many chemical bonds, but are not made of identifiable molecules.

No typical molecule can be defined for salts nor for covalent crystals, although these are often composed of repeating unit cells that extend either in a plane, e.g. graphene; or three-dimensionally e.g. diamond, quartz, sodium chloride. The theme of repeated unit-cellular-structure also holds for most metals which are condensed phases with metallic bonding. Thus solid metals are not made of molecules.

In glasses, which are solids that exist in a vitreous disordered state, the atoms are held together by chemical bonds with no presence of any definable molecule, nor any of the regularity of repeating unit-cellular-structure that characterizes salts, covalent crystals, and metals.

View more:

https://en.m.wikipedia.org/wiki/Molecule