S

In quantum computing, a qubit or quantum bit (sometimes qbit) is the basic unit of quantum information: S

Science

Science (from the Latin word scientia, meaning “knowledge”) is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe.

The earliest roots of science can be traced to Ancient Egypt and Mesopotamia in around 3500 to 3000 BCE. Their contributions to mathematics, astronomy, and medicine entered and shaped Greek natural philosophy of classical antiquity, whereby formal attempts were made to provide explanations of events in the physical world based on natural causes. After the fall of the Western Roman Empire, knowledge of Greek conceptions of the world deteriorated in Western Europe during the early centuries (400 to 1000 CE) of the Middle Ages but was preserved in the Muslim world during the Islamic Golden Age. The recovery and assimilation of Greek works and Islamic inquiries into Western Europe from the 10th to 13th century revived “natural philosophy”, which was later transformed by the Scientific Revolution that began in the 16th century as new ideas and discoveries departed from previous Greek conceptions and traditions. The scientific method soon played a greater role in knowledge creation and it was not until the 19th century that many of the institutional and professional features of science began to take shape; along with the changing of “natural philosophy” to “natural science.”

Modern science is typically divided into three major branches that consist of the natural sciences (e.g., biology, chemistry, and physics), which study nature in the broadest sense; the social sciences (e.g., economics, psychology, and sociology), which study individuals and societies; and the formal sciences (e.g., logic, mathematics, and theoretical computer science), which study abstract concepts. There is disagreement, however, on whether the formal sciences actually constitute a science as they do not rely on empirical evidence. Disciplines that use existing scientific knowledge for practical purposes, such as engineering and medicine, are described as applied sciences.

Science is based on research, which is commonly conducted in academic and research institutions as well as in government agencies and companies. The practical impact of scientific research has led to the emergence of science policies that seek to influence the scientific enterprise by prioritizing the development of commercial products, armaments, health care, and environmental protection.

View more:

https://en.m.wikipedia.org/wiki/Science

Structural biology

Structural biology is a branch of molecular biology, biochemistry, and biophysics concerned with the molecular structure of biological macromolecules (especially proteins, made up of amino acids, RNA or DNA, made up of nucleotides, and membranes, made up of lipids), how they acquire the structures they have, and how alterations in their structures affect their function. This subject is of great interest to biologists because macromolecules carry out most of the functions of cells, and it is only by coiling into specific three-dimensional shapes that they are able to perform these functions. This architecture, the “tertiary structure” of molecules, depends in a complicated way on each molecule’s basic composition, or “primary structure.”

Biomolecules are too small to see in detail even with the most advanced light microscopes. The methods that structural biologists use to determine their structures generally involve measurements on vast numbers of identical molecules at the same time. These methods include:

  • Mass spectrometry
  • Macromolecular crystallography
  • Neutron diffraction
  • Proteolysis
  • Nuclear magnetic resonance spectroscopy of proteins (NMR)
  • Electron paramagnetic resonance (EPR)
  • Cryogenic Electron Microscopy (cryoEM)
  • Electron crystallography and Microcrystal electron diffraction
  • Multiangle light scattering
  • Small angle scattering
  • Ultrafast laser spectroscopy
  • Dual-polarization interferometry and circular dichroism

Most often researchers use them to study the “native states” of macromolecules. But variations on these methods are also used to watch nascent or denatured molecules assume or reassume their native states. See protein folding.

A third approach that structural biologists take to understanding structure is bioinformatics to look for patterns among the diverse sequences that give rise to particular shapes. Researchers often can deduce aspects of the structure of integral membrane proteins based on the membrane topology predicted by hydrophobicity analysis. See protein structure prediction.

In the past few years it has become possible for highly accurate physical molecular models to complement the in silico study of biological structures. Examples of these models can be found in the Protein Data Bank.

Computational techniques like Molecular Dynamics simulations can be used in conjunction with empirical structure determination strategies to extend and study protein structure, conformation and function.

View more:

https://en.m.wikipedia.org/wiki/Structural_biology

Subatomic particle

In the physical sciences, subatomic particles are smaller than atoms. They can be composite particles, such as the neutron and proton; or elementary particles, which according to the standard model are not made of other particles. Particle physics and nuclear physics study these particles and how they interact. The concept of a subatomic particle was refined when experiments showed that light could behave like a stream of particles (called photons) as well as exhibiting wave-like properties. This led to the concept of wave–particle duality to reflect that quantum-scale particles behave like both particles and waves (they are sometimes described as wavicles to reflect this[citation needed]). Another concept, the uncertainty principle, states that some of their properties taken together, such as their simultaneous position and momentum, cannot be measured exactly. The wave–particle duality has been shown to apply not only to photons but to more massive particles as well.

Interactions of particles in the framework of quantum field theory are understood as creation and annihilation of quanta of corresponding fundamental interactions. This blends particle physics with field theory.

Even among particle physicists, the exact definition of a particle has diverse descriptions. These professional attempts at the definition of a particle include:

A particle is a collapsed wave function
A particle is a quantum excitation of a field
A particle is an irreducible representation of the Poincaré group
A particle might be a vibrating string
A particle is a thing we measure in a detector

View more:

https://en.m.wikipedia.org/wiki/Subatomic_particle

Super Proton Synchrotron

The Super Proton Synchrotron (SPS) is a particle accelerator of the synchrotron type at CERN. It is housed in a circular tunnel, 6.9 kilometres (4.3 mi) in circumference, straddling the border of France and Switzerland near Geneva, Switzerland.

The SPS was designed by a team led by John Adams, director-general of what was then known as Laboratory II. Originally specified as a 300 GeV accelerator, the SPS was actually built to be capable of 400 GeV, an operating energy it achieved on the official commissioning date of 17 June 1976. However, by that time, this energy had been exceeded by Fermilab, which reached an energy of 500 GeV on 14 May of that year.

The SPS has been used to accelerate protons and antiprotons, electrons and positrons (for use as the injector for the Large Electron–Positron Collider (LEP)), and heavy ions.

From 1981 to 1991, the SPS operated as a hadron (more precisely, proton–antiproton) collider (as such it was called SppS), when its beams provided the data for the UA1 and UA2 experiments, which resulted in the discovery of the W and Z bosons. These discoveries and a new technique for cooling particles led to a Nobel Prize for Carlo Rubbia and Simon van der Meer in 1984.

From 2006 to 2012, the SPS was used by the CNGS experiment to produce a neutrino stream to be detected at the Gran Sasso laboratory in Italy, 730 km from CERN.

View more:

https://en.m.wikipedia.org/wiki/Super_Proton_Synchrotron